Ultradeep sequencing detects GNAQ and GNA11 mutations in cell-free DNA from plasma of patients with uveal melanoma
نویسندگان
چکیده
Elevated levels of cell-free DNA (cfDNA) are frequently observed in tumor patients. Activating mutations in exon 4 (R183) and exon 5 (Q209) of GNAQ and GNA 11 are almost exclusively found in uveal melanoma, thus providing a highly specific marker for the presence of circulating tumor DNA (ctDNA). To establish a reliable, noninvasive assay that might allow early detection and monitoring of metastatic disease, we determined the proportion of GNAQ or GNA 11 mutant reads in cfDNA of uveal melanoma patients by ultradeep sequencing. Cell-free DNA from 28 uveal melanoma patients with metastases or extraocular growth was isolated and quantified by real-time polymerase chain reaction (PCR) (7-1550 ng DNA/mL plasma). GNAQ and GNA 11 regions of interest were amplified in 22 of 28 patients and ultradeep sequencing of amplicons was performed to detect even low proportions of mutant reads. We detected Q209 mutations (2-38% mutant reads) in either GNAQ or GNA 11 in the plasma of 9 of 22 metastasized patients. No correlation between the proportion of mutant reads and the concentration of cfDNA could be detected. Among the nine ctDNA-positive patients, four had metastases in bone, whereas no metastases were detected in the 13 ctDNA-negative patients at this location (P = 0.025). Furthermore, ctDNA-positive patients tended to be younger at initial diagnosis and show larger metastases. The results show that ultradeep amplicon sequencing can be used to detect tumor DNA in plasma of metastasized uveal melanoma patients. It remains to be shown if this approach can be used for early detection of disseminated tumor disease.
منابع مشابه
Oncogenic GNAQ and GNA11 Mutations in Uveal Melanoma in Chinese
PURPOSE To examine whether GNAQ and GNA11 somatic mutations previously identified in uveal melanomas of Caucasians are associated with uveal melanomas in Chinese patients. METHODS Uveal melanomas treated by primary enucleation in Chinese patients underwent a mutation analysis of GNAQ and GNA11 with sequencing of exon 5 and exon 4. RESULTS The study included 50 patients with uveal melanoma a...
متن کاملFrequent GNAQ, GNA11, and EIF1AX Mutations in Iris Melanoma.
Purpose The most common malignant intraocular tumors with a high mortality in adults are uveal melanomas. Uveal melanomas arise most frequently in the choroid or ciliary body (97%) and rarely in the iris (3%). Whereas conjunctival and posterior uveal (ciliary body and choroidal) melanomas have been studied in more detail genetically, little data exist regarding iris melanomas. Methods In our ...
متن کاملDigital PCR Validates 8q Dosage as Prognostic Tool in Uveal Melanoma
BACKGROUND Uveal melanoma (UM) development and progression is correlated with specific molecular changes. Recurrent mutations in GNAQ and GNA11 initiate UM development while tumour progression is correlated with monosomy of chromosome 3 and gain of chromosome 8q. Hence, molecular analysis of UM is useful for diagnosis and prognosis. The aim of this study is to evaluate the use of digital PCR (d...
متن کاملLack of GNAQ and GNA11 Germ-Line Mutations in Familial Melanoma Pedigrees with Uveal Melanoma or Blue Nevi
Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s) in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma ...
متن کاملDistribution of GNAQ and GNA11 Mutation Signatures in Uveal Melanoma Points to a Light Dependent Mutation Mechanism
Uveal melanomas (UM) originate from melanocytes in the interior wall of the eye, namely from the iris, ciliary body and the choroid with marked differences in light exposure (from dark anterior to illuminated posterior). In contrast to UV radiation, focused or converging visible light readily reaches the retina and can damage DNA which possibly contributes to UM development. In this report chor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013